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The paper is devoted to the spectral properties of the Glauber dynamics for the
Ising model at high temperature 1/b. It is proven that for sufficiently small |b|
there is an invariant subspace, in which the dynamics can be described as ‘‘a free
multi-particle evolution’’, provided that the one-particle subspace is singled out.
The proof is based upon the Haag–Ruelle scattering theory.
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1. INTRODUCTION AND MAIN RESULTS

It is generally accepted that the operators describing the evolution of infi-
nite-component translation-invariant systems with local interactions
possess a so-called ‘‘corpuscular’’ spectral picture. This means that there is
a number of invariant subspaces, cyclic with respect to the translation
group, which are called ‘‘one-particle subspaces’’; all the other (‘‘k-
particle’’) branches of the spectrum are wholly determined by finite sets of
these ‘‘particles’’ (details are explained below). For the time being this
corpuscular picture has been completely or even partially established only
for several models (see ref. 1–6). The present paper is also devoted to this
problem, though our method of the construction of the multi-particle sub-
spaces is different from that of the aforementioned papers. Namely, start-
ing from the already constructed one-particle subspace, we proceed to the k-
particle subspaces using a well-known version of the scattering
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theory, offered by Haag and Ruelle for the quantum field theory.2

2 It was pointed out in ref. 7 that the Haag–Ruelle theory can by applied to the spectral
analysis of the generators of the stochastic dynamics.

However, note that this method (as in the quantum field theory) generally
does not lead to a complete decomposition of the Hilbert space into the
direct sum of the constructed k-particle subspaces: the subspaces, corre-
sponding to the ‘‘bound states’’ of our ‘‘particles’’, are left out.

We consider here the Ising model and the corresponding stochastic
stationary Markov process, the so-called Glauber dynamics. (8) Spectral
properties of the generator L of this dynamics for small values of the
inverse temperature b were studied in ref. 2. It was shown that there are
several invariant subspaces (one-, two-, ... k-particle subspaces), corre-
sponding to the ‘‘lower’’, separate branches of the spectrum. The restriction
of L to the one-particle subspace H1 is unitary equivalent to the operator of
multiplication by an analytic function. The purpose of the present paper is
to construct the invariant subspaces in which L represents the free k-par-
ticle dynamics, i.e., can be obtained by the second quantization of the
restriction of L to the one-particle subspace.

The state space of the Ising model is the set

W={−1, 1}Zn, where n ¥ N.

The formal HamiltonianH of the model is

H(s)=b C
|x−y|=1

s(x) s(y), s ¥ W.

For sufficiently small b the Hamiltonian H determines a unique Gibbs
measure mb on W (see ref. 9). There exists a reversible stationary Markov
process {gt, t ¥ R} with the space of states W and the stationary measure mb.
The generator L=L(b) of the corresponding stochastic semigroup is
defined on the local functions f: WQ C by

(Lf)(s)= C
x ¥ Zn
cx(s)[f(sx)−f(s)]. (1)

Here sx(y) :=−s(y) if x=y and s(y) otherwise. We assume that the
functions {cx( · ), x ¥ Zn} are local and obey the following two properties:

1. The detail balance condition: for all x ¥ Zn and s ¥ W

cx(s)
cx(sx)

=exp[−(DxH)(s)],
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where (DxH)(s)=H(sx)−H(s)=−2bs(x);|x−y|=1 s(y). It implies that
the process is reversible and operator L can be extended by closure to a self-
adjoint operator in the space H=L2(W, mb) which we denote as before L.

2. The following representation is valid:

cx(s)=1/2+ C
B … Q+x

r (x)B sB.

Here

sB=D
x ¥ B
s(x), (2)

Q is a fixed finite subset of Zn and Q+x is the shift of Q by the vector x.
Coefficients r (x)B are translation invariant:

r (x)B =r
(x+z)
B+z

and for some constant K > 0

|r (x)B | < Kb.

Let Us:HQH, s ¥ Zn be the representation of the translation group,
given by

Usf(x)=f(x−s).

We call an invariant with respect to L and {Us} subspace H1 …H one-
particle, if it is cyclic with respect to {Us} and the spectrum of L|H1 is
separated from the rest of the spectrum of L. The following result of ref. 2
establishes the existence of the one-particle subspace H1 …H and yields a
description of the restriction of L to H1:

Theorem 1. There exists b0 > 0 such that for any b, |b| < b0 there
are three invariant with respect to L and {Us}, mutually orthogonal sub-
spaces H0 — {const},H1,H> 1 such that

H=H0 ÀH1 ÀH> 1.

The spectrum of the restriction L|H0 is {0}, the spectrum of L1 :=L|H1 is
contained in the interval (−1−d1, −1+d1) and the spectrum of L|H2
belongs to (−., −2+d2). Here di=di(b) > 0 and d1+d2 < 1, so that the
spectra of L|Hi, i=0, 1, > 1 do not intersect. Further, there exists a unitary
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operator U:H1Q L2(Tn, dp) (Tn is the n-dimensional torus and dp is the
normalized Haar measure) such that UL1U−1 has the form

(UL1U−1f)(p)=f(p) m(p),

where the function m(p) is analytic in a vicinity of Tn and

max
p
|m(p)+1|=d1 < cb

for some constant c > 0, independent of b. Moreover, there exist real func-
tions {vx}, x ¥ Zn, forming an orthonormal basis in H1. They admit the
expansion

vx=C
A
KA, xsA, (3)

where sA are the monomials (2), KA, x are some coefficients and the sum is
over finite subsets of Zn. Coefficients KA, x are translation invariant:

KA+z, x+z=KA, x

There exists l1=l1(b) such that l1(b)Q 0 as bQ 0 and

C
A
|KA, x| l

−dA 2 x
1 =R<.. (4)

Here dA 2 x stands for the minimal length of a connected graph containing
A 2 x. The operator L acts on functions vx as follows:

Lvx= C
y ¥ Zn
m̂(y−x) vx,

where

|m̂(y)| [ cl |y|2 (5)

for some constants c and l2 < 1. Numbers m̂(y) are the Fourier coefficients
of function m(p).

Denote

H (k)=ë
k

1
H1

and

L (k)=L1 é 1 é ... é 1+1 é L1 é ... é 1+1 é ... é 1 é L1.

1094 Iarotski

File: KAPP/822-joss/104_5-6 342343 - Page : 4/21 - Op: DS - Time: 12:54 - Date: 13:08:2001



Let the Hilbert space H (k), symm be the k-fold symmetric product of H1;
H (k), symm is an invariant subspace of H (k) with respect to L (k). Let

F symm(H1)=Â
.

k=0
H (k), symm

be the symmetric Fock space and

dC symm(L1)=Â
.

k=0
L (k) :F symm(H1)QF symm(H1)

(second quantization of L1).
In this paper we prove the following result:

Theorem 2. There exists b0 > 0 such that for any b, |b| < b0 there
exists a subspace H̃ …H which is invariant with respect to L and for
which the restriction L|H̃ is unitary equivalent to dC symm(L1).

Note that by theorem 1 the operator L (k) is unitary equivalent to the
operator of multiplication by the function

Mk(P (k))=C
k

i=1
m(pi), where P (k)=(p1, ..., pk) ¥ Tkn.

Then theorem 2 implies that the spectrum of L contains all the points
which can be represented in the form ;k

i=1 m(pi) for some k and
pi, i=1, ..., k.

We will prove theorem 2 by constructing a wave operator. The proof
will include the four stages:

1. For each nonnegative integer k we define a bounded inclusion
operator Jk:H (k)QH.

2. We prove that there exists the wave operator

Wk=s−limtQ+.Wk, t, (6)

where

Wk, t=exp(− itL) Jk exp(itL(k)):H(k)QH.

It follows that the restriction L|RanWk is unitary equivalent to L (k)|H(k) ı KerWk
(see ref. 10).

3. We prove that KerWk=H(k)ıH (k), symm. Then restriction L|RanWk
is unitary equivalent to L (k)|H(k), symm.
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4. We prove the orthogonality of RanWk and RanWl for k ] l. It
implies theorem 2 if we set H̃ :=Á.

k=0 RanWk. For the next three sections,
corresponding to the stages 1-3, we fix k \ 2 (for k=0, 1 the definition of
Jk and the listed assertions are trivial). Index k is occasionally omitted in
the notation (J, W, Wt, M(P) instead of Jk, Wk, Wk, t, Mk(P (k))).

2. THE INCLUSION OPERATOR J.

Let {ex}x ¥ Zn be the orthonormal basis in H1, formed by functions vx,
mentioned in theorem 1 (we introduce a different notation for the same
objects to emphasize that they are considered here as vectors of a linear
space).

Denote X=(x1, ..., xk) ¥ Zkn and introduce in H(k) an orthonormal
basis

eX=ex1 é ex2 é ... é exk. (7)

Consider the set

S={X ¥ Zkn | min
i ] j
|xi−xj| [ (max

i, j
|xi−xj|)1/2} (8)

and define the inclusion operator J:H (k)QH on the basis vectors as
follows:

J(eX)=3
<k
i=1 vxi−O<

k
i=1 vxiP, if X ¨ S

0, if X ¥ S

where we denote O ·P=> · dmb. We will prove that thus defined J is
bounded and therefore can be extended to all vectors of H (k) by linearity
and closure. The set S is introduced with the purpose of making J
bounded. (Let us show that JŒ, defined by JŒeX=<ivxi−O<ivxiP for all X,
would be unbounded. The inner product in H has the form (f, g)=OfḡP.
It follows that

(JŒeX, JŒeY)=7D
i
vxi D

j
vyj8−7D

i
vxi87D

j
vyj8 .

Fix some n < k and let Xz=(x1+z, x2+z, ..., xn+z, xn+1, ..., xk), z ¥ Zn.
Then, as follows from the lemma proved below,

(JŒeXz, JŒeY)Q 7D
n

i=1
vxi8 17 D

k

i=n+1
vxi D

k

j=1
vyj8−7 D

k

i=n+1
vxi87D

k

j=1
vyj82 ,
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as zQ.. The limit is generally nonzero, though vectors eXz are orthonor-
mal. This shows that JŒ cannot be bounded.)

Lemma 1. Let a1, ..., as, b1, ..., bt ¥ Zn. There exist constants l < 1
and c̃s, t such that

:7D
s

i=1
vai D

t

j=1
vbj8−7D

s

i=1
vai87D

t

j=1
vbj8: < c̃s, tlr({a}i, {b}j), (9)

where r( · , · ) is the distance between sets.

Proof. By (4), the l.h.s. of (9) is majorized by

C
Ai, i=1, ..., s
Bj, j=1, ..., t

D
s

i=1
|KAi, ai| ·D

t

j=1
|KBj, bj| · |OsD{Ai} ·sD{Bj}P−OsD{Ai}POsD{Bj}P|,

where

D{Ai} :={x ¥ Zn | x belongs to an odd number of Ai} (10)

and similarly for D{Bj}. Divide this sum into two: ;1+;2; ;1 is over
those Ai, Bj, for which dai 2 Ai < r({ai}

s
1, {bj}

t
1)/3, dbj 2 Bj < r({ai}

s
1, {bj}

t
1)/3;

while ;2 is over the rest of Ai, Bj. Let us first estimate ;1. Let us use the
following decay of correlations property (see ref. 9):

|OsA ·sBP−OsAPOsBP| [ c
dA+dB
1 lr(A, B)2 ,

where c1 and l2 < 1 are some constants. Set A :=D{Ai}, B :=D{Bj} and
note that

r(A, B) \ r({ai}
s
1, {bj}

t
1)−max

i
{dai 2 Ai}−max

j
{dbj 2 Bj} \ r({ai}

s
1, {bj}

t
1)/3.

Then we have

C1 [ C
Ai, Bj

D
i
|KAi, ai| ·D

j
|KBj, bj| · c

dA+dB
1 lr({ai}

s
1, {bj}

t
1)/3

2 . (11)

Note that dA+dB [;i dai 2 Ai+;j dbj 2 Bj; l1, appearing in (4), is less than
1/c1 for sufficiently small b, therefore

cdA+dB1 [ l −;i dai 2 Ai−;j dbj 2 Bj1 .
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Taking this inequality to (11) and using (4), we find that

C1 [ R s+tl
r({ai}

s
1, {bj}

t
1)/3

2 .

Now let us estimate ;2; note that |OsD{Ai} ·sD{Bj}P−OsD{Ai}POsD{Bj}P| [ 2.
Furthermore, for Ai, Bj, corresponding to ;2, the following inequality
holds:

−C
i
dai 2 Ai−C

j
dbj 2 Bj+r({ai}

s
1, {bj}

t
1)/3 [ 0.

Denote the l.h.s. of this inequality by a and note that la1 > 1 as long as
l1 < 1. That yields

C2 [ l
a
1 C2 [ 2 C

Ai, Bj

D
i
|KAi, ai| ·D

i
|KBj, bj| ·l

a
1.

Now by (4) we obtain

C2 [ 2R s+tl
r({ai}

s
1, {bj}

t
1)/3

1 .

Thus we finally find that

C=C1+C2 [ c̃s, tlr({ai}
s
1, {bj}

t
1),

where c̃s, t=3R s+t, l=(max(l1, l2))1/3. L

We prove the boundedness of J by showing that

max
X ¥ Zkn

C
Y ¥ Zkn

|(JeX, JeY)| <..

(Indeed, if f=;X cXeX, then

(Jf, Jf)=C
X, Y
cXcY(JeX, JeY) [ C

X, Y

|cX|2+|cY|2

2
|(JeX, JeY)|

[C
X
|cX|2 max

X
C
Y
|(JeX, JeY)|=||f||2 max

X
C
Y
|(JeX, JeY)|).
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Let us call sequences X=(x1, ..., xk) and Y=(y1, ..., yk) equivalent
(X ’ Y), if for some permutation p xn=yp(n), n=1, ..., k. Note that for any
X the number of Y’s, equivalent to the X, does not exceed k!. Furthermore,
note that (4) implies |supsvx (s)| [ R. Therefore,

max
X

C
Y ’X
|(JeX, JeY)| [ k! max

X
|(JeX, JeY)|

[ k! max
X

:7D
k

i=1
v2xi8−7D

k

i=1
vxi8

2: [ 2k!R2k <..

Thus, it remains to prove that

max
X

C
Y ¾X
|(JeX, JeY)| <.. (12)

Since (JeX+z, JeY+z)=(JeX, JeY), z ¥ Zn, where we denote X+z :=
(x1+z, x2+z, ..., xk+z) and similarly for Y, then we can assume without
loss of generality that in (12) x1=0. Therefore (12) will follow from the
finiteness of the sum

C
X : x1=0

C
Y ¾X
|(JeX, JeY)|. (13)

Consider a set of pairs

Dn={(X, Y) ¥ Zkn×Zkn | max
i
(|xi|, |yi|) ¥ [n, n+1), x1=0,

Y ¾X, X ¨ S, Y ¨ S},

where S is defined in (8). Since (JeX, JeY)=0 if X ¥ S or Y ¥ S, rewrite (13)
as

C
.

n=1
C

(X, Y) ¥ Dn

|(JeX, JeY)|. (14)

Lemma 2. Let (X, Y) ¥ Dn. Then

|(JeX, JeY)| [ cl`n/6 (15)

for some constant c, independent of n.
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Proof. Consider the four possible cases.

1. max |xi| < n/3,min |yj| \ 2n/3
In this case r({xi}

s
1, {yj}

t
1) \ n/3 and by lemma 1 |(JeX, JeY)|=

|O<ivxi <j vyjP−O<i vxiPO<j vyjP| [ c̃k, kl
n/3.

2. max |xi| < n/3,min |yj| < 2n/3
In this case it follows from the definition of Dn that max |yj| ¥

[n, n+1), therefore maxi, j |yi−yj| \ n/3 and, sinceY ¨ S, then mini ] j |yi−yj|
\`n/3. Write

|(JeX, JeY)| [ :7D
k

i=1
vxi D

k

j=1
vyj8:+:7D

k

i=1
vxi8: :7D

k

j=1
vyj8: (16)

Let |yj0| ¥ [n, n+1). Then r(yj0, {yj}j ] j0) \`n/3, r(yj0, {xi}
k
1) \ 2n/3 \

`n/3. Let us apply lemma 1 in the following way: set s=1 and t=2k−1,
choose a1=yj0 and take the rest of yj’s and all of xj’s as b1, ..., b2k−1. Then,
since Ovyj0P=0 (see ref. 2), we have

7D
k

i=1
vxi D

k

j=1
vyj8:=:7D

k

i=1
vxi D

k

j=1
vyj8−7D

k

i=1
vxi D

k

j ] j0

vyj8: Ovyj0P| [ c̃1, 2k−1l
`n/3.

In order to estimate the second summand in the r.h.s. of (16), write the
bound |O<i vxiP| [ |sups vxi(s)|

k [ Rk for the first factor. Further, let us
apply lemma 1 to vyj, setting s=1, t=k−1 and choosing a1=yj0 and the
rest of yj’s as b1, ..., bk−1. Then

:7D
k

j=1
vyj8:=:7D

k

j=1
vyj8−7D

j ] j0

vyj8 Ovyj0P: [ c̃1, k−1l
`n/3.

We finally obtain in this case that |(JeX, JeY)| [ (c̃1, 2k−1+Rkc̃1, k−1)l`n/3.

3. max |xi| \ n/3 and for some i0 r(xi0, {yj}
k
1) \`n/6.

Note that maxi, j |xi−xj| \ n/3, because x1=0 and max |xi| \ n/3.
Hence mini ] j |xi−xj| \`n/3 by definition of S. In particular, r(xi0,
{xi}i ] i0) \`n/3 \`n/6 and r(xi0, {xi}i ] i0 2 {yj}

k
1) \`n/6. Applying

again lemma 1 to partitions {xi}
k
1={xi0} 2 {xi}i ] i0 and {xi}

k
1 2 {yj}k1=

{xi0} 2 ({xi}i ] i0 2 {yj}
k
1), we obtain |(JeX, JeY)| [ (c̃1, 2k−1+Rkc̃1, k−1)l`n/6.

4. max |xi| \ n/3 and for all i r(xi, {yj}
k
1) <`n/6.

Here we have again maxi, j |xi−xj| \ n/3 and mini ] j |xi−xj| \
`n/3. Further, maxi, j |yi−yj| \ maxi, j |xi−xj|−2 maxi r(xi, {yj}

k
1) \ n/3

−2`n/6 \ n/9 for sufficiently large n; therefore mini ] j|yi−yj| \`n/3,
because Y ¨ S. Since X ¾ Y, one can find i0 such that r(xi0, {yj}

k
1) > 0. As
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by assumption for all i r(xi, {yj}
k
1) <`n/6, then one can find j0 such

that |xi0−yj0| <`n/6 and xi0 ] yj0. Since mini ] j |yi−yj| \`n/3 and
mini ] j |xi−xj| \`n/3 >`n/3, then r({xi0} 2 {yj0}, {xi}i ] i0 2 {yj}j ] j0) \
min(mini ] j |xi−xj|, mini ] j |yi−yj|)− |xi0−yj0| \ `n/3−`n/6 = `n/6.
Using Ovxi0P=0 and Ovxi0vyj0P=0 (orthogonality), write

|(JeX, JeY)| [ :7D
k

i=1
vxi D

k

j=1
vyj8:+:7D

k

i=1
vxi87D

k

j=1
vyj8:

=:7D
k

i=1
vxi D

k

j=1
vyj8−Ovxi0vyj0P 7D

i ] i0

vxi D
j ] j0

vyj8:

+:7D
k

i=1
vxi8−7D

i ] i0

vxi8 Ovxi0P: · :7D
j ] j0

vyj8: . (17)

Then lemma 1 and inequalities r({xi0} 2 {yj0}, {xi}i ] i0 2 {yj}j ] j0) \`n/6
and r({xi0}, {xi}i ] i0) \`n/6 imply that the first summand in the r.h.s. of
(17) is bounded by c̃2, 2k−2l `n/6, while the second one is bounded by
Rkc̃1, k−1l`n/6, i.e., |(JeX, JeY)| [ (c̃2, 2k−2+Rkc̃1, k−1)l`n/6 for sufficiently
large n.

So, if the constant c is chosen large enough, then the bound (15) holds
true in all of the four cases considered above. L

Note that the cardinality |Dn| [ (n+1)2kn. Then by lemma 2 the series
(14) is majorized by the convergent series ;.

n=1 (n+1)
2kncl`n/6 and, there-

fore, converges. The boundedness of J is proven.

3. THE EXISTENCE OF THE WAVE OPERATOR W.

By the Cook method, the existence of the wave operator (6) will be
proved if we show that for a dense set {u} …H (k)

F
+.

0
||(LJ−JL(k)) exp(itL (k)) u|| dt <. (18)

Denote ut :=exp(itL(k)) u ¥H (k). Let ut, X :=(ut, eX) ¥ C be the coefficients
in the expansion

ut= C
X ¥ Zkn

ut, XeX,
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where {eX}X ¥ Zkn is the orthonormal basis introduced in (7). Let Tkn=
[−p, p)kn be the kn-dimensional torus and dP be the normalized Haar
measure on it. Define a unitary isomorphism F:H (k)Q L2(Tkn, dP) by

(Fu)(P)= C
X ¥ Zkn

(u, eX) exp(i(P, X)),

where (u, eX) and (P, X) are the inner products in H (k) and Rkn. Note that
ut, X, X ¥ Zkn are the Fourier coefficients of Fut. Denote û :=Fu, ût :=Fu.
By Theorem 1, FL(k)F is the operator of multiplication by the analytic
function

M(P)=C
k

n=1
m(pn), where P=(p1, ..., pk), pn ¥ Tn.

Therefore

ut, X=F
Tkn

exp(i[tM(P)−(P, X)]) û(P) dP. (19)

The integral (18) is upper bounded by

C
X ¥ Zkn

||(LJ−JL(k)|| F
+.

0
|ut, X| dt. (20)

We will prove that the sum converges; the proof will be carried out in the
following way. We divide the sum into two parts. The first part includes
the summands for which the integral >+.0 |ut, X| dt is small. By the stationary
phase method, this is the case if in (19) the gradient NP[tM(P)−(P, X)]
] 0, i.e., X ] tNPM(P) for all P ¥ supp û. Using the boundedness of the
second factor ||(LJ−JL(k)) eX||, we prove the convergence of the first sum.
The finiteness of the second sum follows from the smallness of
||(LJ−JL(k)) eX||. We show that this quantity exponentially decreases as
mini ] j |xi−xj|Q., where (x1, ..., xk)=X. The second sum includes
(roughly speaking) those summands, for whichX/t ¥ {NPM(P) | P ¥ supp û}
for some t, therefore û is chosen so that

{NPM(P) | P ¥ supp û} 5 {(x1, ..., xk) ¥ Rkn| ,i ] j : xi=xj}=”. (21)

Analyticity ofM(P) implies that there is a dense set of such û.
Let us proceed to the precise formulation. Consider the set T0 … Tkn:

T0={P ¥ Tkn | ,i ] j : NpiM(P)=NpjM(P)},
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where Npi are the gradients with respect to the corresponding coordinates.
Let function û ¥ C.(Tkn) is such that supp û 5 T0 ]” (which is equivalent
to (21)). The set T0 is closed and has zero measure by the analyticity of
M(P), therefore such functions are dense in L2(Tkn). Let W be an open
bounded subset of Rkn, containing the set

{NPM(P) | P ¥ supp û} (22)

and not intersecting {(x1, ..., xk) ¥ Rkn | ,i ] j : xi=xj}. Such W exists
according to the choice of û and the boundedness of the set (22). The
following estimate holds (see ref. 10):

Lemma 3 (stationary phase method). For any n ¥ R there exists
a constant c such that |ut, X| [ c(1+|X|+|t|)−n for all X ¥ Zkn, t ¥ R, for
which X ¨ tW (we denote here by |X| the length of the vector X and
tW :={tw|w ¥ W}).

Let

ZŒ :={X ¥ Zkn | -t > 0X ¨ tW},

Z' :=Zkn0ZŒ={X ¥ Zkn | ,t > 0 X ¥ tW}.

Then the sum (20) can be rewritten as

C
X ¥ Zkn

||(LJ−JL(k)|| F
+.

0
|ut, X| dt= C

X ¥ ZŒ
+ C
X ¥ Z'
. (23)

By lemma 2,

F
+.

0
|ut, X| dt [ c F

+.

0
(1+|X|+t)−n dt=

c
n−1

(1+|X|)−n+1

if X ¥ ZŒ. Let us choose n sufficiently large, so that the series
;X ¥ ZŒ (1+|X|)−n+1 converges. It follows that the first summand in the
r.h.s. of (23) is finite, if we prove that supX ||(LJ−JL(k)) eX|| <.. Since L (k)

and J are bounded, it suffices to prove that supX ||LJeX|| <.. Since JeX=0
for X ¥ S, we assume without loss of generality that X ¨ S. Note that by (1)
LsA=−2;x ¥ A cxsA. The norm ||cx|| is finite and independent of x; hence
||LsA|| [ 2 |A| ||cx||. Using the expansion (3) and the notation (10), we write:
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||LJeX|| [ >L 1D
k

l=1
vxl2>=> C

A1, ..., Ak

D
k

l=1
KAl, xlL(sD{Al})>

[ 2 C
A1, ..., Ak

D
k

l=1
|KAl, xl| ||cx|| |D{Al}|

[ 2 ||cx|| D
k

l=1

1C
Al

|KAl, xl|(1+|Al|)2 <.

uniformly in X due to (4).
So, it remains to prove that ;X ¥ Z' <.. Let us first estimate the

integral >+.0 |ut, X| dt for X ¥ Z'. Let c1=infX ¥ W |X|. By definition of W,
c1 > 0. Represent the integral as the sum

F
+.

0
|ut, X| dt=F

|X|/c1

0
+F

+.

|X|/c1
.

Since |ut, X| [ ||û||, the first summand in the r.h.s. is not greater than
||û|| |X|/c1. Further, by definition of c1, we have X ¨ tW for t > |X|/c1.
Hence, by lemma 3,

F
+.

|X|/c1
|ut, X| dt [ c F

+.

0
(1+|X|+t)−2 [ c.

Thus,

F
+.

0
|ut, X| dt [ c+

||û||
c1
|X|.

It follows that the convergence of ;X ¥ Z' in (23) will be established if we
prove that ||(LJ−JL(k)) eX||Q 0 sufficiently fast as |X|Q., X ¥ Z', so
that

C
X ¥ Z'

1c+||û||
c1
|X|2 ||(LJ−JL(k)) eX|| <.. (24)

Note that if X ¥ Z' and |X| is sufficiently large, then X ¨ S. Indeed, let

c2 := inf
i ] j, X ¥ W

|xi−xj|,

c3 :=sup
X ¥ W
|X|.

(25)

By the choice of W we have c2 > 0 and c3 <..
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If X ¥ Z', then for some t X/t ¥ W, therefore mini ] j |xi−xj| \ c2t,
|X| < c3t. It follows that

min
i ] j
|xi−xj| \

c2
c3
|X|. (26)

Since maxi, j |xi−xj| [ max |xi| [ |X|, then for |X| > 2c23/c
2
2 we have

mini ] j |xi−xj| > (maxi, j |xi−xj|)1/2, i.e. X ¨ S. So, assume without loss of
generality that X ¨ S. Represent (LJ−JL (k)) eX as the sum I1(X)+I2(X),
where

I1(X)=LJeX− C
k

i=1

1D
j ] i
vxj2 Lvxi,

I2(X)=C
k

i=1

1D
j ] i
vxj2 Lvxi−JL (k)eX,

and estimate I1(X) and I2(X) separately. Using the expansion (3), write

I1(X)= C
A1, ..., Ak

D
k

i=1
KAi, xi 5L(sD{Ai})− C

k

i=1

1D
j ] i
sAj
2 LsAi6 . (27)

Note that if A1, ..., Ak do not intersect, then D{Ai}=A1 Q A2 Q ... Q Ak
and L(sD{Ai})=;k

i=1 (<j ] i sAj) LsAi, so that the summands in (27), for
which A1, ..., Ak do not intersect, equal 0. Denote by ;Œ the sum of those
summands, where at least two of the sets A1, ..., Ak intersect. Then

||I1(X)|| [ 4 CŒ 1D
k

i=1
|KAi, xi|2 C

k

i=1
|Ai| ||cx|| [ 4 CŒ 5D

k

i=1
|KAi, xi| (1+|Ai|)6 ||cx||.

(28)

Note that for fixed x and E > 0

(1+|A|) 1l1+E
l1
2 −dx 2 A < 1

for all A, except for a finite number. It follows from here and from (4) that

C
A
|KA < x| (1+|A|)(l1+E)−dx 2 A=: R1 <..

For intersecting A1, ..., Ak we have inequality

C
k

i=1
dxi 2 Ai−min

i ] j
|xi−xj| \ 0. (29)
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We have l1 < 1; choose E small enough, so that l1+E < 1. Denote by a the
l.h.s. of (29), then (l1+E)−a > 1. Multiplication of the r.h.s. of (28) by
(l1+E)−a then yields

||I1(X)|| [ 4 CŒ 5D
k

i=1
|KAi, xi| (1+|Ai|)(l1+E)

−dxi 2 Ai6 ||cx|| (l1+E)mini ] j|xi−xj|

[ 4 ||cx|| R
k
1(l1+E)

mini ] j |xi−xj|.

As was shown above, mini ] j |xi−xj| \ c2 |X|/c3, which gives us the desired
bound

||I1(X)|| [ 4 ||cx|| R
k
1(l1+E)

c2|X|/c3.

Now let us estimate ||I2(X)||. Since Lvx=;y m̂(y−x) vy,

C
k

i=1

1D
j ] i
vxj2 Lvxi=C

k

i=1
C
y ¥ Zn
1D
j ] i
vxj2 m̂(y−xi) vy.

Recall the bound (5) and cast out the summands corresponding to those
i’s and y’s, for which |y−xi| > a, where a :=mini ] j |xi−xj|/2. By (26),
a \ c2 |X|/2c3. Note that for any E > 0

C
z ¥ Zn, |z| > a

l |z|2=o((l2+E)
a) as aQ+.,

hence the part of the sum we cast out is o((l2+E)c2 |X|/2c3) as XQ.. Denote
Xi[y]=(x1, ..., xi−1, y, xi+1, ..., xk) and note that if x ¥ Z', |y−xi| <
mini ] j |xi−xj|/2 and |X| is sufficiently large, then Xi[y] ¥ S.

By definition of J and L (k),

JL (k)eX=C
k

i=1
C

y ¥ Zn, Xi[y] ¥ S
m̂(y−xi) 1vyD

j ] i
vxj−7vy D

j ] i
vxi82 .

In this sum we also cast out the summands for which |y−xi| > a, so that
the part we cast out is o((l2+E)c2 |X|/2c3). Then

||I2(x)||=>C
k

i=1

1D
j ] i
vxj2 Lvxi−JL (k)eX>

[ C
k

i=1
C

y ¥ Zn : |y−xi| [ a
|m̂(y−xi)| · :7vy D

j ] i
vxj8:+o((l2+E)c2 |X|/2c3).
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If y−xi| [ mini ] j |xi−xj|/2, then r(y, {xj}j ] i) \ mini ] j |xi−xj|/2, hence,
by lemma 1,

:7vy D
j ] i
vxj8: [ c̃1, k−1lmin |xi−xj|/2 [ c̃1, k−1lc2 |X|/2c3

by inequality (26) for X ¥ Z'. Therefore,

||I2(X)||=O(lc2 |X|/2c3)+o((l2+E)c2|X|/2c3).

The exponential decrease of ||I1(X)|| and ||I2(X)|| implies (24). The existence
of the wave operatorW is proven.

4. Ker W=H (k) ıH(k), symm

The inclusion KerW ‡H (k)ıH (k), symm is trivial. The opposite inclu-
sion will be proven if we establish that for a dense subset {u} …H (k), symm

||Wu||2=k! ||u||2. (30)

As before, suppose that û ¥ C.(Tkn), NpiM(P) ] NpjM(P) for P ¥ supp û
and W is an open set, corresponding to û. W can be chosen symmetric with
respect to the planes pi=pj. Lemma 3 implies that

ut= C
X ¥ tW 5 Zkn

ut, XeX+o(1), tQ+.

and

lim
tQ+.

C
X ¥ tW 5 Zkn

|ut, X|2=||u||2.

Respectively, by the boundedness of J,

||Wu||2= lim
tQ+.

||Wtu||2= lim
tQ+.

||Jut||2

= lim
tQ+.

5 C
X, Y ¥ tW 5 Zkn

(JeX, JeY) ut, Xut, Y6 .

If X, Y ¥ tW 5 Zkn and t is sufficiently large, then X ¨ S, Y ¨ S; hence

(JeX, JeY)=7D
k

i=1
vxi D

k

j=1
vyj8−7D

k

i=1
vxi87D

k

j=1
vyj8 .
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By (25), mini ] j |xi−xj| \ c2t for X ¥ tW, therefore, by lemma 1,

:7D
k

i=1
vxiP|=:7D

k

i=1
vxi8−Ovx1P7D

k

i=2
vxi8: [ c̃1, k−1lc2t

and

:7D
k

i=1
vxi87D

k

j=1
vyj8: [ c̃1, k−1Rklc2t. (31)

Let X ¾ Y and X, Y ¥ tW 5 Zkn. Let us consider the two possible cases.

1. For all xi ] yj |xi−yj| \ c2t/2.
Since X ¾ Y, one can find xi0 such that r(xi0, {xi}i ] i0 2 {yj}

k
1) \ c2t/2.

Then by lemma 1

:7D
k

i=1
vxi D

k

j=1
vyj8:=:7D

k

i=1
vxi D

k

j=1
vyj8−Ovxi0P 7D

i ] i0

vxi D
k

j=1
vyj8: [ c̃1, 2k−1lc2t/2.

(32)

2. There are xi0 ] yj0 such that |xi0−yj0| < c2t/2.
Since mini, j |xi−xj| \ c2t, mini, j |yi−yj| \ c2t, then the distance between

{xi0} 2 {yj0} and {xi}i ] i0 2 {yj}j ] j0 is not greater than c2t/2. Since xi0 ] yj0,
then Ovxi0vyj0P=0. Then by lemma 1

:7D
k

i=1
vxi D

k

j=1
vyj8:=:7D

k

i=1
vxi D

k

j=1

8−Ovxi0vyi0P 7D
i ] i0

vxi D
j ] j0

vyj8: [ c̃2, 2k−2lc2t/2.
(33)

So, by (31),(32) and (33), we have

|(JeX, JeY)|=O(lc2t/2) as tQ+.. (34)

uniformly for X, Y ¥ tW.

1108 Iarotski

File: KAPP/822-joss/104_5-6 342343 - Page : 18/21 - Op: DS - Time: 12:54 - Date: 13:08:2001



Now let X ’ Y and X, Y ¥ tW 5 Zkn. Recall that Ov2x1P=·· ·=Ov2xkP
=1. Using mini ] j |xi−xj| \ c2t and lemma 1, we obtain

:7D
k

i=1
vxi D

k

j=1
vyj8−1:=:7D

k

i=1
v2xi8−1:=:7D

k

i=1
v2xi8−D

k

i=1
Ov2xiP:

[ :7D
k

i=1
v2xi8−Ov2x1P 7D

k

i=2
v2xi8:

+|Ov2x1P| · :7D
k

i=2
v2xi8−Ov2x2P 7D

k

j=3
v2xi8:

+...+D
k−2

i=1
|Ov2xiP| · |Ov

2
xk−1v

2
xkP−Ov

2
xk−1POv

2
xkP|

[ (c̃2, 2k−2+c̃2, 2k−4+...+c̃2, 2) lc2t.

This computation and (31) imply that for X ’ Y

(JeX, JeY)=1+O(lc2t). (35)

uniformly in X, Y ¥ tW. Note that ut, X=ut, Y for X ’ Y, because
u ¥H (k), symm. The number of X, Y ¥ tW 5 Zkn increases as a polynomial in
t, hence it follows from (34) and (35) that

||Wu||2= lim
tQ+.

5 C
X, Y ¥ tW 5 Zkn

(JeX, JeY) ut, Xut, Y6

=k! lim
tQ+.

C
X ¥ tW 5 Zkn

|ut, X|2=k! ||u||2,

which proves (30).

5. ORTHOGONALITY OF Ran Wk AND Ran Wl FOR k ] l

Let k > l \ 2 (case l=1 can be verified similarly, case l=0 is trivial).
It suffices to prove that for dense subsets {u (1)} …H (k), symm and {u (2)} …
H (l), symm

(Wku (1), Wlu (2))= lim
tQ+.

(Wk, tu (1), Wl, tu (2))

= lim
tQ+.

(Jk exp(itL(k)) u (1), Jl exp(itL(l)) u (2))=0.
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As before, choose û (1) ¥ C.(Tkn), û (2) ¥ C.(T ln) such that NpiMk(P (k)) ]
NpjMk(P (k)) for P (k) ¥ supp û (1), NpiMl(P (l)) ] NpjMl(P (l)) for P (l) ¥ supp û (2)

and W1, W2 open bounded sets, corresponding to û (1), û (2). By lemma 3

(Jk exp(itL(k)) u (1), Jl exp(itL(l)) u (2))

= C
X ¥ tW1 5 Zkn

Y ¥ tW2 5 Zln

u (1)t, Xu
(2)
t, Y(JkeX, JleY)+o(1), tQ+. (36)

For sufficiently large t if X ¥ tW1 5 Zkn, Y ¥ tW2 5 Z ln then X ¨ Sk, Y ¨ Sl
and

(JkeX, JleY)=7D
k

i=1
vxi D

l

j=1
vyj8−7D

k

i=1
vxi87D

l

j=1
vyj8 . (37)

As before, the second summand is O(lct) for some c > 0 and l < 1. Let us
bound the first one. Let c (1)2 =infi ] j, X ¥ W1

|xi−xj| > 0. If X ¥ tW 5 Zkn and
Y ¥ Z ln, then for some i0 r(xi0, {xi}i ] i0 2 {yj}) \ c

(1)
2 /2, since l < k. It

follows then by lemma 1 that the first summand in (37) is O(lc
(1)
2 t/2). Since

the number of X ¥ tW1 and Y ¥ tW2 increases as a polynomial in t, the r.h.s.
in (36) tends to 0.
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